

Presentation Overview

♦ HMS Project

♦ Holonic Systems

♦ Industrial Testbeds

♦ HMS Phase 2

Basis of Holonic Systems

◆ Arthur Koestler

- The Ghost in the Machine, 1969
- Modeling of biological and social systems

♦ Holon

- Greek word "holos" meaning whole
- Suffix "on" denoting a particle
- Similar to AGENTS but always cooperative
- Self-contained unit capable of functioning independently but dependent on other units

♦ Holonic System

- Open modular
- Decision-making autonomy
- Cooperation by message passing and negotiation

Pice Ligent	Holon	
Slave	Server	

ooperativeness

Benefits of HMS

- ♦ Robustness to disturbances
- ◆ Human integration
- ♦ Availability
- ◆ Flexibility
- **♦** Scalability
- ◆ Coordination of distributed decisions
 - Different times, locations, contexts, people
- ◆ Ideally suited for manufacturing and supply chain enterprises
 - Adaptive and distributed
 - Can add intelligence with soft computing technologies

HMS Objectives

- ◆ Develop, market and support HMS compatible devices, components, subsystems and support tools
- Design, implement, deploy and support HMS in industrial applications
- ◆ Increase the understanding, systematization, and acceptance of HMS concepts
- ◆ Support the development of **international standards** which contribute to the achievement of HMS goals

HMS Project

5 Regions

Australia, Canada, EU, Japan, USA

♦ 30 Organizations

> Industry

ATOS, BHP Billiton, DaimlerChrysler, Fanuc, Rockwell Automation, Toshiba, Yaskawa Electric

R&D Laboratories

CSIRO, Fraunhofer IPA, NRC Canada, Profactor, VTT Automation

Universities

Calgary, Connecticut, Hannover, Keele, KU Leuven, Osaka, SFU, Tokyo, Vanderbilt

◆ Invested US\$50,000,000

- Feasibility study 1991-93
- Phase 1: 7 work packages 1995-00
- Phase 2 : 4 work packages 2001-04

Holonic Manufacturing Systems (HMS)

HMS Phase I and II

Distributed Production Management

Business
Planning
&
Operation

Manual Work Integration

Supply-Chain Management

Business & Enterprise Integration

Holonic Manufacturing Systems

Presentation to ISC Board, May, 2002 Okinawa, Japan

Project 95003

Effective Date of Commencement of the HMS Project: February 15, 1996

Phase I Termination: October 15, 2000

Phase II Commencement: October 16, 2000

HMS Vision

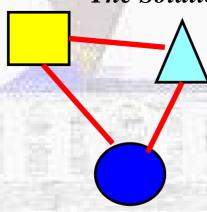
Manufacturing Challenge

Rapid delivery of

Required Characteristics

Flexibility

Robustness



customized Products in

competitive global markets

The Solution:

Autonomous Cooperative Modules

Holons

HMS Mission

Basic Technology and Organisation for Worldwide Goals:

HMS Compatible Devices and Systems

HMS in End-user Applications

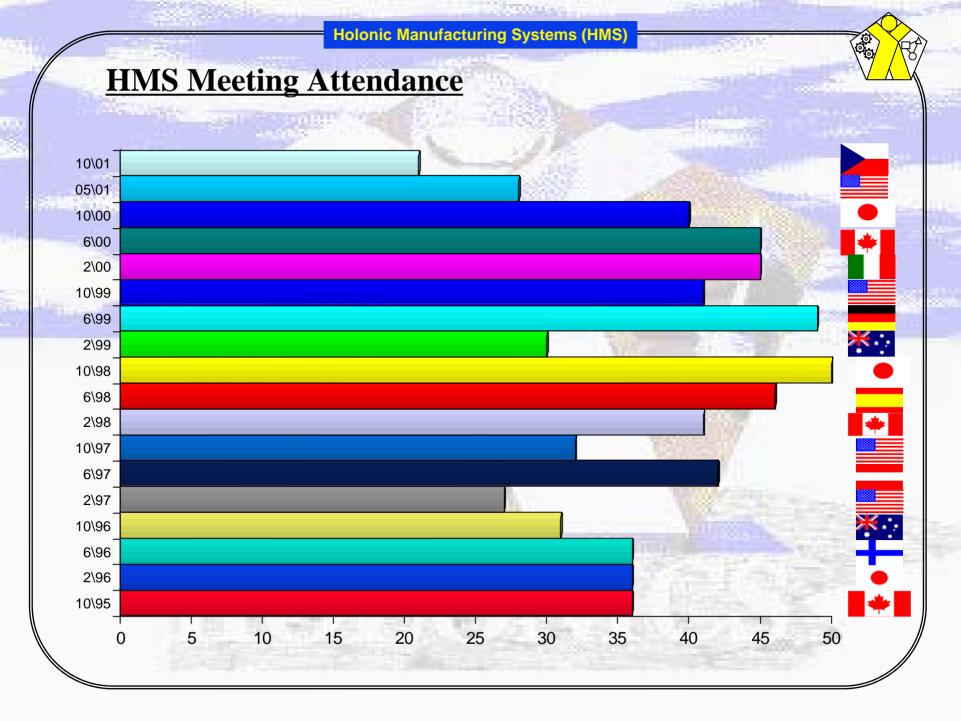
Understanding & Systematization of HMS

International Standards

The Coordinating Partners of HMS

TOSHIBA

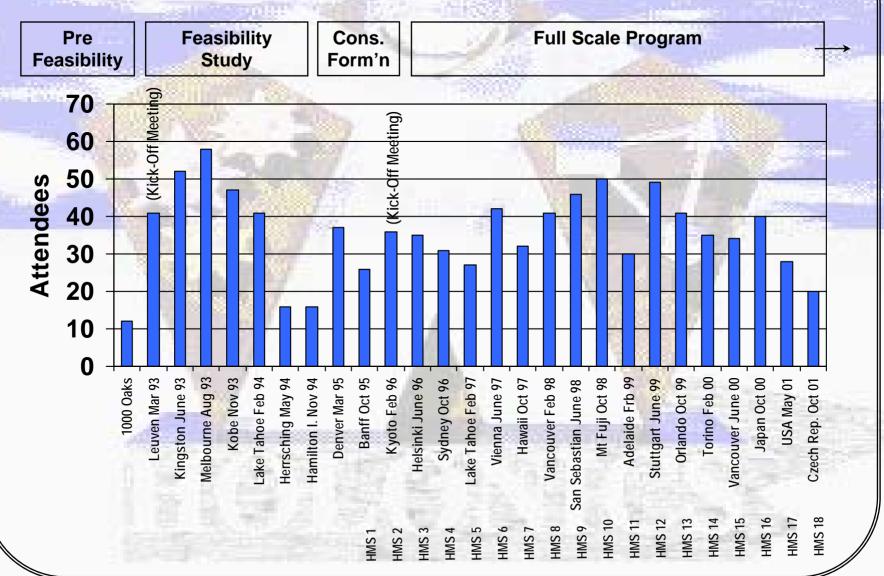
International Coordinating Partner



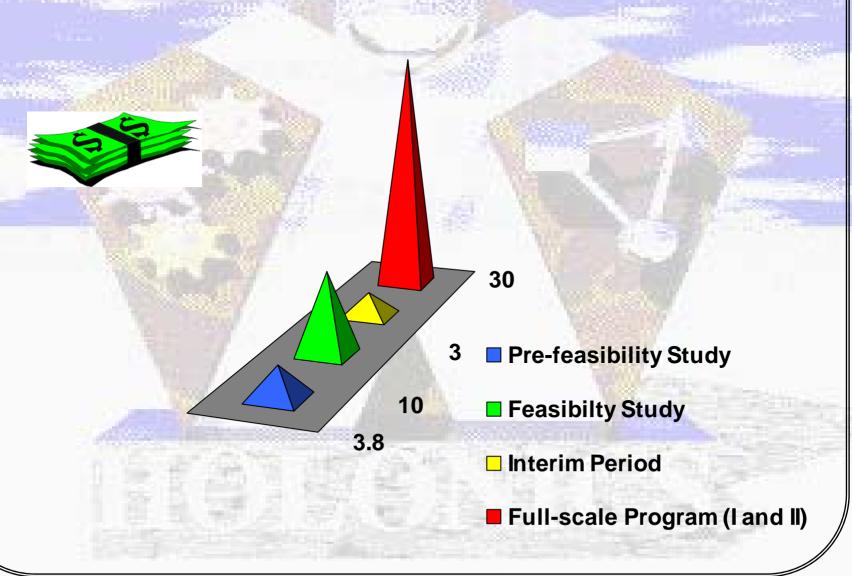
(HMU)

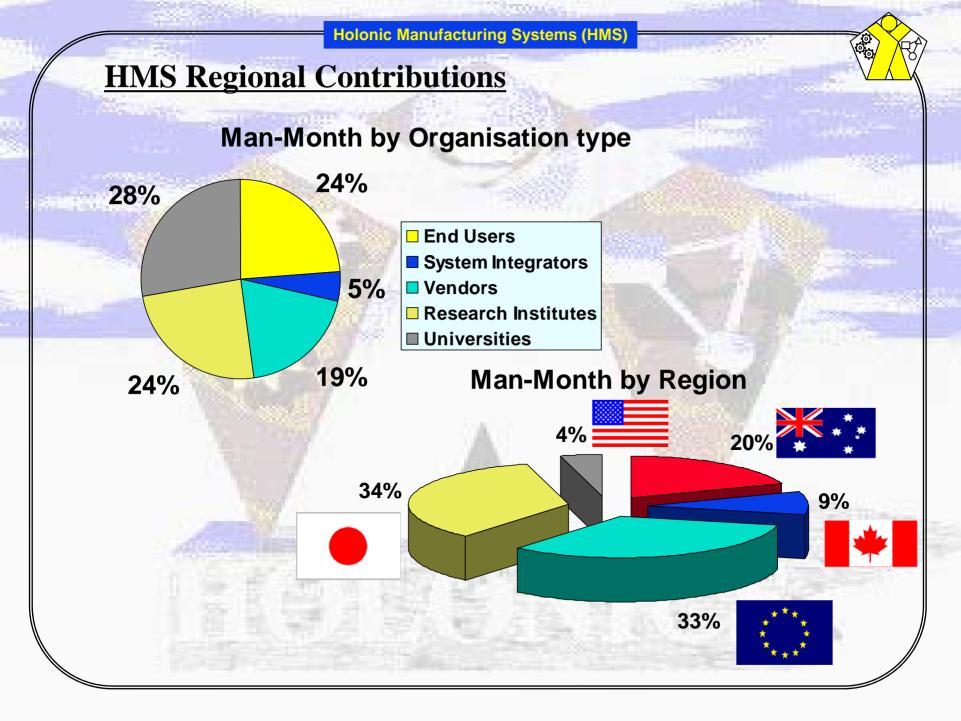
(HMOB)

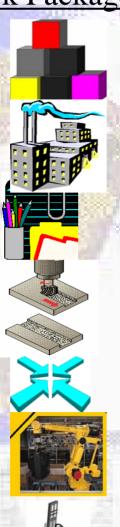
(HoRMS)



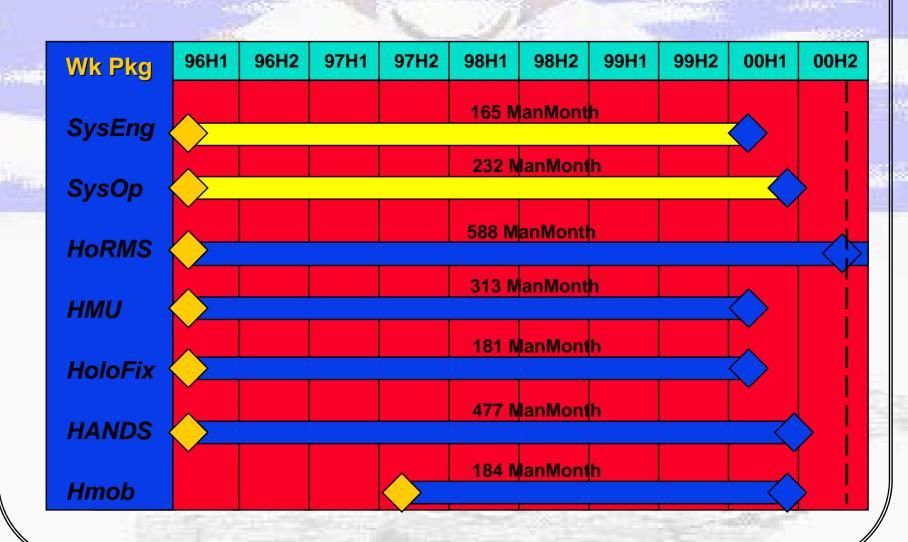
Composition of Consortium Contributions (Man Months) Phase I


	Region	Aust	Canada	EU	Japan	USA	Total	0/0
Ε	End User	110	80	184	169	Name .	543	23.85%
	ys <mark>tem</mark> ntegrators	- /		107	10		107	4.70%
7	Vendors Vendors	100	-	61	351	24	436	19.15%
	Research nstitutes	211	-	345	-	- 10	556	24.42%
	Academic Partners	124	122	46	270	73	635	27.89%
	Total	445	202	743	790	97	2277	100%
	%	19.54%	8.87%	32.63%	34.69%	4.26%	100%	


International Meeting Attendance


Investment by Partners in million US\$ Phase I

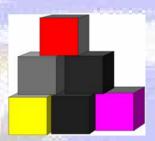
HMS Work Packages



- **>>** WP1 System Architecture and Engineering
- > WP2 System Operation
- **➤ WP3 Holonic Resource Management**
- > WP4 Holonic Machining Unit
- **➤ WP5 Holonic Fixturing Station**
- **WP6 Holonic Handling System**
- **WP7 Holomobiles**

Districtance.

HMS - Work Package Duration and Effort



HMS - Major Accomplishments

WP1/1: HMS Architecture Model

WP1/2: IEC6-1499 function block Holonic elements

http: www.holobloc.com

WP2/1: Reliable communication protocol specification

WP2/2: Knowledge representation and

interpretation for resource allocation

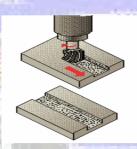
WP3/1: Part-oriented control models of engine

manufacturing systems

WP3/2: Simulation study of holonic maintenance

scheduling in steel production

HMS - Major Accomplishments


WP4/1: Control Architecture of Machine Tool

Holon

WP4/2: System architecture of manufacturing

preparation system

WP4/3: Holonic process planning

WP5/1: Cooperation algorithm for workpiece identification - development of sensor holon

WP5/2: Algorithm for workpiece manipulation

system for fixturing

WP5/3: Design of the Holonic Fixturing Station

HMS - Major Accomplishments

WP6/1: Motion control methods for co-operating robots

WP6/2: Communication interface and protocol of sensor holons

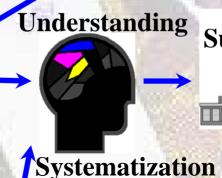
WP7/1: Simulations: Holonic Motor Block
Assembly Line; Holonic AGV Materi
Flow for Engine Assembly Line

WP7/2: Wireless Communivation Modules

WP7/3: Acceptance of Holonic line configuration proposal by Daimler-Chrysler

ACCOMPLISHMENTS TO HMS GOALS

WP2/1 Comms protocol
WP2/2 Resource Allocation
WP4/3 Process planning
WP5/1 Sensor holons
WP6/2 Sensor holon protocols


WP7/2 Wireless comms.

Subsystems

WP1/1 HMS architecture
WP4/1 Control architecture
WP5/3 Holonic fixturing station
WP6/1 Co-operating robots

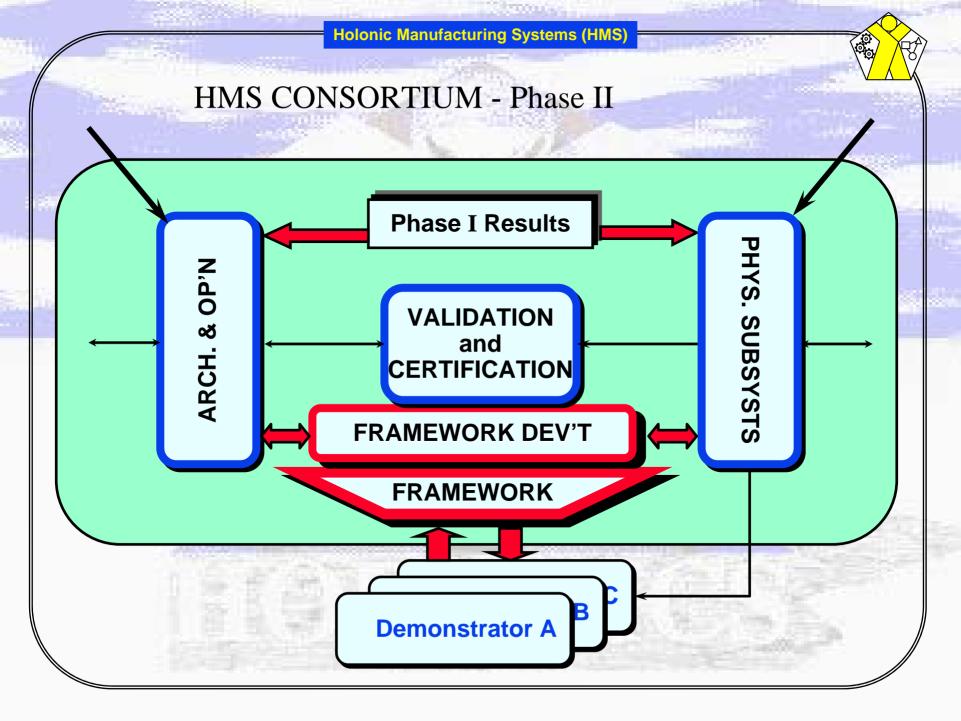
WP3/1 Part-oriented control
WP3/2 Holonic maintenance
WP7/1 Holonic engine
production
WP7/1 Holonic material flow
WP7/3 Industrial acceptance

Support of

End-user Systems

WP1/2 IEC 61499

Standardization


Phase 1 Work Packages

- ♦ WP1 Systems Architecture and Engineering
- ♦ WP2 Systems Operation
- ♦ WP3 Holonic Resource Management
- ◆ WP4 Holonic Manufacturing Unit
- ♦ WP5 Holonic Fixturing
- ♦ WP6 Holonic Handling Systems
- ♦ WP7 Holomobiles

Phase 1 Industrial Projects

- ◆ Engine Assembly (DaimlerChrysler, IPA Germany)
- ◆ Robotic Shot Blasting (Blastman Robotics, VTT Finland)
- ◆ Electric Motor Assembly (Toshiba, Hitachi, Fanuc, Yaskawa Japan)
- ◆ Electronic Assembly (Alcatel, ATOS Belgium, Italy)
- ◆ Engine Machining (GM Holden Australia)

Phase 2 Work Packages

- ♦ Holonic Control Devices
 - technical manufacturing equipment level
- Holonic Production Sites and Physical Equipment
 - manufacturing work cell level with multiple devices
- ♦ Holonic Production Execution Systems
 - scheduling and control of Holonic Manufacturing Systems at factory and supply chain levels
- ♦ Holonic Man-Machine and Emulation Systems
 - virtual manufacturing and supply chain environment to create test-beds for holonic system implementations

Conclusions

- ◆ Began with an abstract concept of holons
- ♦ Phase 1 developed foundation for generic technologies
- ◆ Phase 2 demonstrating potential for distributed systems
 - Physical equipment
 - Manufacturing work cells
 - Factories
 - Supply chains
- ◆ International acceptance of holonic system architectures
 - Cooperating with FIPA to develop standards
- ♦ HMS provides
 - capability to integrate manufacturing and supply chains
 - offers migration path from legacy systems to fully distributed manufacturing systems.